首页»版块 历史内容 历史内容 历史内容 设计时间缩短10倍,PPA提升20%,AI终于要革新芯片设计

设计时间缩短10倍,PPA提升20%,AI终于要革新芯片设计

[复制帖子标题和链接]

11210

荣耀粉丝16683277  LV8  发表于 2020-4-12 10:07:44 属地未知 来自:荣耀9X
两大EDA巨头产品相继引入AI

上周,Synopsys宣布推出首个用于芯片设计的自主AI应用程序——DSO.ai(Design Space Optimization AI)。这个AI推理引擎能够在芯片设计的巨大求解空间里搜索优化目标。

根据三星设计平台开发部执行副总裁Jaehong Park的说法,原本需要多位设计专家耗时一个多月才可完成的设计,DSO.ai只要短短3天即可完成。

DSO.ai做了什么?如今,芯片设计是一个蕴藏着许多可优化方案的巨大求解空间,其求解空间的规模是围棋的数万亿倍。但要在如此巨大的空间进行搜索是一项非常费力的工作,在现有经验和系统知识的指导下仍需要数周的实验时间。

除此之外,芯片设计流程往往会消耗并生成数TB的高维数据,这些数据通常在众多单独优化的孤岛上进行区分和分段。要创建最佳设计方案,开发者必须获取大量的高速数据,并在分析不全面的情况下,即时做出极具挑战的决策,这通常会导致决策疲劳和过度的设计约束。

DSO.ai引擎所做的,是通过获取由芯片设计工具生成的大数据流,并用其来探索搜索空间、观察设计随时间的演变情况,同时调整设计选择、技术参数和工作流程,以指导探索过程向多维优化的目标发展。

这个引擎使用了Synopsys研发团队发明的机器学期来执行大规模搜索任务,自主运行成千上万的探索矢量,并实时获取千兆字节的高速设计分析数据。

通过两年多与学界以及产业界的合作,借助DSO.ai可以得到更加优化的设计解决方案,加速芯片的上市时间,并且还能够降低芯片的设计和制造总体成本。

本周三,另一大EDA巨头Cadence也宣布推出已经过数百次先进工艺节点成功流片验证的新版Cadence数字全流程,进一步优化功耗,性能和面积,广泛应用于汽车,移动,网络,高性能计算和人工智能(AI)等各个领域。

这一新版的流程采用了支持机器学习(ML)功能的统一布局布线和物理优化引擎等多项业界首创技术,吞吐量最高提升3倍,PPA最高提升20%,助力实现卓越设计。ML功能可以让用户用现有设计训练Cadence数字全流程iSpatial优化技术,实现传统布局布线流程设计裕度的最小化。

MediaTek公司计算和人工智能技术事业部总经理Dr. SA Hwang说:“通过Innovus设计实现系统GigaOpt优化器工具新增的ML能力,我们得以快速完成CPU核心
您需要登录后才可以评论 登录 | 立即注册
简体中文 - China
快速回复 返回顶部 返回列表